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V@ and T/‘, of the second player, and the saategies V, and v* of the second player 
replaced by the strategies U, and U* of the first player. This is equally applicable to 

Theorem 3.2. 
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The accuracy with which a nonlinear control system with lag reproduces an arbitrary 
action belonging to a certain class of functions is examined. The maximum errors aris- 

ing in reproducing the action and their dependence on the parameters of the controlled 
object, and on the law of control used, are estimated. 

1. Strtemrnt of the problem, Consider a closed system consisting of a 

controlled object and a regulator, The purpose of this system is to reproduce , using the 

initial value of the object y (t) , a previously ~kno~ con~ollingaction r (t) whose 
rate of change 5’ (t) 5 ‘p (t), I’p (t)l < m, II: (0) = 0 (1-i) 
is bounded, belonging to the class of functions F. The quality of performance of the 

system, which is at rest at t & 0, will be characterized by the maximum error 

Ems(t) = max 1 E(t) 1 , e (t) = x (t) - y(t) tx f Ff 0.2) 
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and the quantity 
eCS3 = lim Emax (t) (t-+‘X) 

This is therefore essentially the same problem on accumulation of perturbations inves- 
tigated in fl, 21. 

The behavior of the controlled object is described by the following differential equa- 

coy@) (tf + 1.. + cn-.J y” (t) -I- y’ (tf = u (t - -c) (4.3) 

y (0) = . - - = y-1) (0) = 0 u (tJ = 0 (--. r < t1< 0) WI 
The controlling signal u (t) is modulo bounded by the constant u,,, Direct feedback 

2.6 (9 = ke (t) (18 (q I ,( 9) f u(f) = u0 signh (8) jje (b) I> 7) (1.5) 

is used as the law of control realized by the regulator. 

Equations (1.3) and (1.5) describe the behavior of a closed, astatic servomechanism 

with lag and a bounded nonlinearity, The structural scheme of this servomechanism is 
shown in Fig. 1. where Fr (p) is the transfer function of the object 

Y(P) F,(p)+.=-, 
FJ fP) 

Q = PL, L(p) = ~op"-~ -t * * . + Cn-2p $ 1 (i-6) 

Functions Y (p) and U (p) are Laplace transforms of y (t) and u (t). 
The upper bounds for Eoo are given below, showing the dependence of these estimates 

on the parameters &,, m, ‘r, k and on the distribution of zeros of the polynomial L (p), 
this distribution being assumed to be known. This assumption is justifiable, since an 

~~~~~~ 

open system often contains a series of ele- 
ments joined in a sequence and described by 
low, first- or second-order equations. 

The present problem is one of pursuit, in 

which the distance between the pursued and 
the pursuer is defined by the function E (t). 

Fig. 1 
The quantity ~~~~ (t) is not zero even for 

uo > m and the initial conditions (1.1) and 
(1.4) hold, since the pursued object is “inertialess”, i, e. it can attain its maximum velo- 
city m instantaneously, while the pursuing object has inertial properties determined by 
the distribution of zeros in the polynomial L (p). The law of control (1.5) chosen is not 
optimal. It is however widely used in practice for its simplicity of application, since the 
information of higher derivatives which is difficult to obtain, is not required. Neverthe- 

less, a, can be sufficiently small, provided that the controlled object has desired dyna- 
mic properties, 

From the stationary state of the system it follows that emax (t) < F,. If E, < U&F1, 

then by (1.5) the closed system behaves as a linear one and can be described by the 
equation 

coy(n) (t) + I.. f en-a y” (t) + y’(t) + ky (t - r) = ks (t - z) (4.i) 

y (fr) = 2 (2,) = 0 (- r < t1 q 0)) y(O)= * * * = p-1) (0) = 0 

Theorem 1.3 gives the estimate for &lI,ax (t) and E, in a linear system. If this 
estimate exceeds u-&-~, it cannot be guaranteed that the system satisfies (1.7), and in 
this case Theorem 1.1 must be used, the latter containing an estimate for Coo in the 
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nonlinear system (1.3) and (1.5). 
The estimate of e max(t) for linear systems without lag is given in p, 41. Estimates of 

e max (r) for linear systems with lag were given by the author in his communication at the 
Second All-Union Conference on the Theory of Equations with Deviating Argument. 

Jet us assume that all zeros pjof the polynomial L (p) arranged in order of decreas- 

ing real parts satisfy the conditions 

Pj = - Qj (1 + $jJ, “j > a0 > 0 w 

(j = 1,. ..n-i) 

al = a,, max I ~j I = p. 

In the theory of automatic control the quantities a, and p. denote the degree of stabi- 
lity and the oscillation of L (p) , respectively. 

Theorem 1.1. In a nonlinear system with lag (1.3) and (1.5) the maximum error 

Em does not exceed 

em < Go = u. k-l + (aor)-’ Do -f (2za,r -t 1) DI - if mu,-’ - 

em < Go = u. {k-l + (a,y)-’ [Do -j- (2moY + 1) &I) lrn = ‘0) 
ecu = 30 (m> uo) 

Here 

D1 = D, (a0 (1 - y) (a2 - u,y)-‘)x @2# adl D1 = D,e-’ (m = a,) 

(1.10) 

The following alternatives are possible: (1) at least one real zero of L (p) is present 

on the line Re p = - a, (1.11) 

and (2) no real zeros are present on the line (1.11). The correspnding values of the 

relevant quantities are : 
n-1 n-1 

(1.12) 

(1) Do = $, (‘4 Do = + (n = 3), Do=Dr=r=l (n=2) 

Y j = (IPjI>Pj)* 

?- = (1 + p12) (2 [(I - yy - y3 - p1” + ((l-2y)z + 2p.,2 ((1 - yY + 

+ yZ) + plyI}-“‘, 0 < y < (1 + cq-’ 
where r is an arbitrary number. 

Note. Estimates of aor, in the first order (n = 1) equation can be obtained from 

the estimates for n = 2 by going to the limit U, -+ 00 
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-%z < u.0 [k-l i_ 7 (1 -j- mu,-‘)] (76 4, em= w (m>w) (1.14) 

Proof of Theorem 1.1 is given in Sect. 2. From (1.9) and (1.13) it follows that when 

the degree of stability a, of L (p) is large, the oscillation & is limited and the lag r 

is small, the maximum error E, can be made small by choosing a suf~ciently large k _ 
The quantities a,, po, z define the dynamic properties of the object. 

Let us now consider the estimation of &r,ax (t) in the closed linear system (1.7). The 

quantity e,ax (t) d e pe d n s on the degree of stability a* of the quasipolynomial N(p) 
corresponding to Eq. (1.7) 

N(p) = Q (p) + xfTPT, 6* = minj (-Re pj*), N (gj*) = 0 (1.15) 

Let us find the least degree of stability of N (p) that can be attained for the chosen 

value of the amplification factor k. 
Theorem 1. 2. Let the amplification factor k satisfy the condition 

X: = h 1 Q (-- 6) / exp (- h), (1 < h < Al) (l.lfq 

Then the degree of stability 6* of the quasipolynomial N (p) is greater than 

Q = n& (2&y, (0) I/h,W - 1 + n)-’ (I-Ii) 

where 6, is the least root of the quadratic equation 
n-1 

zr&)=1, rl(z)=rz$ s 3 
5dkl 

qy-+*, w=&4; 

j 1 

(1.18) 
[L,LI’ + Y,’ 

Aj= 1 (iP~iG!f~fP Rj= 2L1if,, (IF~lIy~)’ 
I/j&-+- 

. . ‘? f 

$,, > 0 and h, > 1 are arbitrary numbers. 

Corollary. Function yi (z) in (1.18) can be replaced by 

r1@> = r1-/- til) ” ;. (1‘1:1) 

where 4 is the number of zeros of L (p) lying on the line (1.11) and the sum is taken 
over all remaining zeros of L (p). 

When L (p) has zeros at a large distance from the line (1. ll), the estimate based 
on the corollary may be found to be more accurate. 

The proof of Theorem 1.2 is given in Sect. 3. The condition that h E [ 1, hi] is also 
justified by technical considerations, since it is difficult to maintain k at the required 

value with sufficient accuracy. 
The greatest attainable degree of stability 6 E,,, of iV (p) is easily defined for a first 

degree equation at any value of k. Let us compare this value with the estimate obtained 

from Theorem 1.2 for h1 = 1 

S” illax 
=+ (k = r'e-'), 6 = 2n-lT-1 (k = ~n-l+p--2.11T) 

Approximate methods for investigating the distribution of zeros of the characteristic 
polynomial of a closed system relative to the amplification factor IC , using the root 
hodograph were employed in e. g. [5$ For systems with lag similar methods were used 
in 161. Upper bounds of the degree of stability attainable are given in g, S]. 

Using Theorem 1.2 we shall give the estimate for &mas (t) in the linear system(l.7). 
Theorem 1. 3. If the amplification factor k satisfies the condition 
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k = 5 1 Q (- 6) 1 e-6r (i<h?<h<b<h!) 

then we have, in the closed linear system (1.7), 

emax (t) < m (nd)-l G1 (1 - ee6*), ~00 < m (n6)-l Gl 

Here 6 is defined in Theorem 1.2, 

G1 = In (h + (1 + @)“) + (1 + P)“’ (n / 2 - arc t,g h) 
Ko f/(h% + 1) (h&V)-2 - 1 

h = arc cos (6rl(6)) 
6Tl(S) ’ 

969 

(1.20) 

(1.21) 

(1.22) 

The sum in (1.22) is computed over all real zeros of L @) 

H o = (1 - A,-1) (03< I), & = (1 - &-I) (203-l - i&j-“) 

D 

3 
= nei.3(h2-i)C 

4hz (Tl - T)2 ’ 
C=f (1.23) 

The proof of Theorem 1.3 is given in Sect. 4. In Theorems 1.1 - 1.3 the arbitrary 
constants y, h, hi have been chosen so as to minimize G,; this however yields very 
unwieldy expressions. It can be shown that for a, -+ cc, z -+ 0 and bounded PO , 
Enlax (t) and &CO both tend to zero. 

Let us now consider briefly a law of control more complex than (1.5) 

U=~YU (I~I<uo!k), u = us sign 2, (I 8 I 2 uo/kL u=E-~-~~E’ 

Usually “the correction in velocity” is introduced in the linear closed systems in order 
to improve their dynamic properties. If e. g. r = 0 and the polynomial L (JJ) has a real 

zero pr = - ~0 which is nearest to the imaginary axis, it is expedient to set k, = 

ie 
a,-l. The factor a,-l p $ 1 appearing in the numerator of the transfer function of 
open system cancels in this case with the corresponding factor appearing in L (p). 

This enables the degree of stability of the closed system to be increased through Theo- 
rem 1.2 and the estimate of the largest accumulated error to be reduced by virtue of 

Theorem 1.3. 
The problem of the influence of the correction in velocity” on &oo when the control- 

ling signal is restricted remains unsolved. It can however be shown that Theorem 1.1 
remains valid in this case. When k, is chosen such that k,p + 1 is one of the factors 
of L @), Theorems 1.2 and 1.3 are also valid, and the system will remain linear as 

long as 
v, < uok-l, uoo =limmaxj2;(t)I(~~~, zEF) 

2. Eatimatlon of the maximum error in a nonlinear 8y8tem. This 
involves the proof of Theorem 1.1. 

A. Apply the Laplace transformation to the second equation of (1.2). ‘I’ iking (1.1). 
(1.6) into account we have 

E (P) = x (P) - Y (p) = P-W (p) - (p L (P))-’ e-v I; (P) 

Employing the theorems on convolution and integration of the original i,!nction gives 
t 

8 (t) = s [(p (h) - Sl (1- h) u (h)] d/l, 
e-PT 

Sl (‘) + __ , ‘p (1) $ Q, (P) (l!.l) 

PL (PI 0 
The symbol + denotes the correspondence between the original function and its 
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Laplace transform. Let 

e (4) = ?, 8 0) 2 9 (f E 1% cl), 8 (b) = maxI E (t) (r E [a, cl) (2.X) 

From (2.1). (2.2). (1.5) it follows that 
U (t) = ug 0 E [a, bl) 

b a 

8 (b) < m (b - a) + u0 
c s 
$- - sl(b - tl)dtl + 

s 
1 sl(a - tl) - s~(b - h) I dll (2.3) 

a 0 

Let us obtain a lower bound for the second term and an upper bound for the third term 
in the braces of (2.3). From (2.X) we obtain 

sl (t) = 1 + qx (6, 41 (t) + Qlb) = (PUP) P)-1 - P-' (2.4) 

The following estimate which is valid for QI (t) will be proved in Subsection C so as 
to avoid interrupting the present argument 

I q1 (t) I < e-“oyf (DO + Dr (eaoui - if) ft>;;) 

1 ql(l) I< eeaoYf (&I + D1 (eaoYt - if) 
f2.5) 

fefs~f 

The quantities a~, y, DO, L)l appearing in (2.5) have been defined in Theorem 1.1, 
Let us assume that 

b-a),T, b >, z, a>t (2.6) 
Using (2.5) we obtain 

b-a 

s 
SI. (t) dt > b - a - 3 (1 - e-aoy(b-a)) - Zlh f 

4 (e 
a,w 

- 1) 
aoTea,y(b--a) 

(2.7) 

0 

We now turn to estimation of the third term in the braces of (2.3) 

D b 

~1 = 

% 

1 s1 (a - tl) - SI (b - tl)l dti = 
s 

I sz (4 I dz, sa (z) = s1 (2 - b + a) - 81 (z) (2.8) 

b---a 

From (2.1) it follows that 
sz(z)+G((p)Y’(~), G(p) = e-pS+(t), ‘I!(@=’ 

-p(b-a) _ i 

L (P)’ 
$ q,(1) (3.9) p 

By the convolution theorem we have L 

9 (2) = \ g (z -21) $ (~1) dzl 
6 

From the Laplace transform of J! (z~) follows 

\I,&) = -1 to Q 21 < b-a), Wl) = 0 +I > b - 4) 
Hence . 

b-a 

sz (z) = - f g (z - 21) dzl 

From (2.9) we obtain 5 

g (2) = 1 (2 - 2) (2 > r), g (2) = 9 

(z > b - a) (2.20) 

(I d 4, E (2) + L-l (P) 

In Subsection B we quote the foflowing estimate : 

I I@) I < hacrye 
-ad 

Using this estimate and (Z.10) we obtain 

1 sz (2) 1 < .&eaoY7 (eaoyfb6) - I) e- %” @>b--+~) 

1 sa (z) [ < DleGv (e-aoY’ - e-“oyz) (b - 4 < z < b - a + T) 

(Y.li) 
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Relations (2.8), (2.11) yield the estimate 

Let us insert the right-hand terms of (2.7). (2.12) into (2.3). Since 

,_a,ub 
we find that 

- e-g’= < 0, b--a=9 

e-a,7 n 
(2.13) 

.,m--A -22hc*7']}-{raij- m)q 

The function 4Di (n) reaches its maximum value at the point 

q* = (soy)-1 In [UO (D, - D1 + 2DleeyT) (UO - rr~)-~] 

Inserting n* into (2.13) we obtain estimate (1.9) for E (b). Since the right-hand part 
of (1.9) is independent of E , and E (t) reaches its maximum value on the interval [a ~1 

at the point 6,(1.9) yields the estimate for ECO+ 

In the above discussion it was assumed that conditions (2.6) are satisfied. Using simi- 

lar methods for the remaining cases it will be seen that the case just studied gives the 
largest value for the right-hand part of (2.3). 

B. Estimation of 11 (t) 1. n-1 

r(t)+L=~ Pj ( 
-W j_l Pj - P 

Pi = - aj 0 + WI 

From (1.8) it follows that Re pl = --a@, 
Let us set the notation 

x (t) = I Plea 1 (az - al)-’ (e+’ - f~+‘), 21~ (t) * p1p4 (p - ~$1 (P _ Pa)-l 

The convolution theorem yields 

eaoYl 1 1x9, (f) 1 \<x (tf twf @-Da (2.14) 

NOW replace the right-hand side of (2.14) by its maximum value. Taking into account 
(1.10) we have 

1 kz 1 g hl I pIpa 1 fB&alaz)-1e-4~Yr, h= a0 (1 - yf (a0 (1 - u) b- wMX (2.15) 

Using this estimate and the convolution theorem we obtain the following inequality 

Repeating the above procedure successively we arrive at the estimate 

(2.46) 

If aa= WI, relation (1.10) is obtained by passing in (2.15) to the limit at CC% -+ a@, 
If YJ = d, we have I (t) G p1 (P 

- n)-‘7 1 (t) = aoe-sor., D1 = y = 1 

C. Estimation of 1 Q (t) 1. From (2.4) it follows that 

gl (t)+ Qa (P) + Qs (PI, Q* = (pL fp))-’ - p-’ + q% (t), Qa = L-W + g8 ft} (2.47) 

CR>, (P) = (e+ - 1) p-’ + 92, (0, ‘p+ 0) = --f (0 < t < r), p,(t) = 0 (t>r) 

Using the convolution theorem and taking into account (2.16). (2.17) we obtain 

lq3)-\(Dl(i--e -*Q~‘) (0 < t < z), ) qs I< DI (e”““’ - 1) ebaout p+) (2.18) 
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Since Qz (p) has no poles to the right of the line (1. ll), the inversion theorem yields 

At least one zero of 1~ (P) lies on the line (1.11). Considering the case ~1 = - ao 
we have l/-fln”7” f o9 1 PI+ a0r - io 1-l < 1 (KY<’ f2) (2.20) 

The coefficients of the function nl(o) corresponding to the real zeros of L(p) are esti- 
mated from above by the quantity vjl and the coefficients corresponding to complex 

conjugate zeros of L(p) , by the quantity vj” where vj is defined by the formula (1.13). 

This can be easily verified by direct computation of the maxima of these coefficients, 
If no real zeros of L(p) lie on the line (1.11) then at least one complex conjugate 

pair of zeros pl and p2. lie on this line and we have 

l/ao2y2 + o2 (1 pl -I- u0y --- iwl Ip2 -i- coy - io / 1-l < r (0 < y < (I + JO-l) (2.21) 

The value of r is given in (1.13) and is obtained by calculating the maximum value 
of the left-hand side of (2.21). Inserting the estimates for the coefficients of nl (w) and 
(2.20) or (2.21) into (2.19) yields 

II-1 n-1 

1 ~2 (/) 1 < D,,c-"u", (1) Do == & p Vj, (2) Do -=$ n vj (2.22) 

1 -2 1-3 

Adding the inequalities (2.18) and (2.22) yields the estimate (2.5) for / m (t) I. 

3. Estimation of the degree of rtability of linear ry8temc with 
lag, This involves a proof of Theorem 1.2. 

The argument principle (91 implies that the necessary and sufficient condition for all 
zeros of the quasipolynomial N(p) to lie on the left of the straight line Rep = - 6 
is given by the following equation for the increment of the argument of the function 

N(P): b arg N, ((0) = 1i)2ruf (OG@<==), Ns (co) z .-V (- 6 i- io) (3.1) 

Suppose that a value o1 > 0 has been found for some 6 E (0, a,) such that the 
amplification factor k satisfies the condition (1.16) of Theorem 1.2 

Im iv6 (0) > 0 (0 i 0) <al), Im Qs (0) > 0 (0 Q 0 < w) 

(3.2) 
I OS (0) I >:h, ( QR (f-9 [ (a>ad, Qs (0) EE Q (- 6 -IL io) 

Under these conditions the equality (3.1) holds and the quantity 8 will be the lower 

bound of the degree of stability 6*of the quasipolynomial N(p). Indeed, we find that 

A arg NS ((0) = A arg QS (0) + Aarg NF; (w) I&-’ ((u) (3.3) 
holds on any interval of variation of w 

Since the degree of stability a,of the polynomial L(p) is greater than 6 and Q = 
= pL (p), then n - 1 zeros of Q (p) lie to the left of the line Re p = - 6 and 
the remaining one p = 0 , to the right. Therefore 

Qs (0) <O, A arg Qs (w) = ‘i2 (n - 2) n: ((1 G d < w) (3.4) 

By condition (1.16) of the theorem Ns (0) > 0, consequently taking into account 

(3.2) we find that the point 
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lies in the lower semiplane for any o > aI. In addition, by (3.2) and (1.16), point D 

lies in the right semiplane and tends to the point (1, 0) on the real axis as o -+ 00 - 

This implies that A arg JJs to) Q&-l (o) = 3t (O,(O<h) (3.5) 

Equations (3.3) - (3.5) yield (3.1). 
To obtain the quantity 6 for which conditions (3.2) hold, we denote 

Q6 (61) = ps (0) eip@), k = $6 (O)e+ (1 & h G h,) (3.6) 

The first condition of (3.2) is equivalent to the inequality 

ps (0 ) sin q2i (a) > &xi(O) sin OIL 
Since 

6 CZ (0, %A Q (P) = PL (P) 
we have 

(3.7) 

9s = - 32 - arc tg i06-’ + $6, $6 = arg L (-6 + iw), +t, (0) = 0 (3.8) 

It can easily be verified that the inequality 
n-1 

(3.9) 

holds for any value of w 
If the condition 

0 -C 6Y,(Q < 1, Yl (6) = Tl + (n - 1) (a, - q-1 

z1 = mh, I 2 + h,a,-1 (3.10) 

where h,is an arbitrary nonnegative number, holds, then from (3.8). (3.9) we have that 

sin ‘~6 > sin zlo > 0 (O~o~ol=y, -l (6) arc cos 6y,(6) < n / 2 Z,) 

i. e. the second condition of (3.2) is fulfilled. Since (3.11) 

sin zlo > + (0) CZ 10, %I), h E 11, %I, +<1 (~E(O,$j) 

the inequality (3.7) is fulfilled automatically, provided that 

Ps{o) P&-l(O)> 1, 0 E (0, 011 

Let us denote 

(3.12) 

ps (w) ps-’ (0) = r1 (2) H,-l (4 = 1, (z), z = OJa (3.13) 

In this equation r,(z) combines all the coefficients corresponding to the real zeros 
of Q (p), and H,-’ (z) combines the coefficients corresponding to the complex zeros 
of Q (p). Discarding the terms which contain z in higher than the first order in the 
polynomial r1 (z) with positive coefficients, we obtain 

r,(z)>r(z)=i+kz*, k*=++x* (aj:6)t (3.14) 

where the sum contains the terms corresponding to the real zeros of L (p). 
Every coefficient hj (z) of the function H1 (z) corresponding to a pair of complex 

conjugate zeros of L @)is bounded from above by the function 

bj (Z) = 1 + kj2Z (0 < Z ,( Zj = (At - 1) kj-“) 

b* (Z) = Aj2 (Z > Zj) (3.15) 
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If the curve hi (z) has a maximum, then the horizontal part of the polygonal line 
bi (2) touches hj (z) at its maximum while its inclined part not only touches hj (z) 
but has with it another common point z = 0. If hj (z) decreases monotonously, bj (2) 
is parallel to the abscissa. It can be verified that the coefficients kj and Aj decrease 

with decreasing 6. From (3.10) it follows that 6 < a,, the latter being the smallest 
root of (1.18). For this reason we set 6 = bt in the expression for kj and Aj 

k? = 0 (0 G pj < Yj) kj2 = 0.25 aj-2Y~-2, (pj 2 v$yj) 

kja = 2 (pj” - yj”) (pi2 f yt)-’ (Yj < Pj < vr3Yi) 

The quantities yj and A j are defined by (1.18). Replacing the coefficients hj (z) with 

their upper bounds given by (3.15) yields an upper bound H, (z) for H,(Z). If the deri- 
vatives b’ (z) are replaced in the expression for ‘Ii,’ (z) by their maximum kj2+ we 
obtain 

H, (z) < H (z), H (z) = 1 + k,z (2 < 20 = (Wz - 1) ko-‘) 
n-1 

(3.16) 

Taking into account (3.14) and (3.16) we find that (3.13) yields 

f, (z) > r (z) H-’ (z) = I (2) > (1 + k* z) I Wz (3.17) 

Let a value of 6 be chosen such that the inequalities 

(3.18) 

(3.19) 
It can easily be verified that 

k* > k, (6 < 81) (3.20) 

The latter condition is sufficient for the first inequality of (3.18) to hold, and this 

implies that (3.12) also holds. From (3.16) and (3.11) it follows that the second ine- 
quality of (3.18) holds, provided that 

yt-1 (6) arccos (Eiyt (6)) 2 (hi2Ws - 1P (k*)-“2 (3.21) 

Since the functions 

Yi’ (6) (0 G 6 G W, arc cos 5 (O<xr 1) 

6,y,(&) = 1, k* > lY2 

are convex, the inequality (3.21) is automatically satisfied, provided that 

0.5 Jtyi-1 (0) (1 - 6 6,-l) > 6y%,VP - 1 (3.22) 
The latter expression yields the quantity 6 defined by (1.17) and this quantity repre- 

sents the upper limit of the degree of stability of N (p). Thus all the conditions of (3.2) 
are satisfied. The first condition holds since it is equivalent to (3.7) which follows from 

(3.11). (3.12), (3.17) and (3.181, the second condition applying by virtue of f 3.11) and 
the third condition following from (3.17) and (3.19). 

Replacing the inequality (3.9) by 
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yields a corollary to Theorem 1.2. In the above expression Q denotes the number of 
zeros of L (p) lying on the straight line (1.21) and the sum is taken over all the remain- 
ing zeros of L (p). 

4, Etttmrtlon of maximum error tn a lfnsrr eyttem with lag. 
Let us prove Theorem 1.3. We apply the Laplace transformation to Eq. (1.7). Taking 

(1.1),(1.2),(1.6) and (1.15) into account gives 

E (P) = G (p) Q, (p), G (p) = L fp) N-l tp), E 07) + 8 @I, Q (P) ti a)(t) 

Since by Theorem 1.2 the degree of stability of N @) exceeds 6, G (p) is a trans- 
form and the growth index of its original g (t) is smaller than 6 (see [lo]). From the 
convolution theorem (1. II) it follows that 

t 

E (t) = 
s 

g (7) q, (t - z) d% E~~=~t)=~~~~~~~~~~ W) 

0 0 

Let us obtain an estimate for 1 R @)I using the inversion theorem and integrating along 
the line p = - 0 + iw. Setting 

G @) = p-1 + A (p), A (‘p) = - ~cN-~ (p) p-l e-pT (4.2) 

we find that --bfiC 

g (r> = lim \ G (;yPf dp = q lim i A f- 6 + iw) eimt dw (4.3) 
c--rco _p”-h c-0 

since the integral of the first term of G @) is equal to zero. 

Let us estimate the second integral in (4.3). We set 

2 = ma, & (zf = 1 A C-4 + iof 1, p (4 = ~a (a) + 0% (4.4) 

Taking into account (3.6). (3.13) we find 

As (2) = ((6% + 2) R (2))~‘“, j$ (2) = 4)s f -+ fr (2) toss +- 

Using (3.11) and inequality (4.5) 

(4.6) 
To find the lower limit for the first term of R (2) in (4.5). we make use of the fact 

that for any z > 0 11-l 

11' (2) ,(I, @I+[+ -t 2 (a 18)p~=l,(z)~ (4.7) 
j=i j 

Since 1 < & < A.,, taking into account (3.17) and (3.18) we find 

1 < I, (2) < hz (0 C z < zz < z,), Al = As (4.8) 

From (4. ‘I), (4.8) and the condition h > & we have 

I, (2) < 1 + h&z (0 < a < z,) 

(1 - I, (z)h-1)s > (1 - 3=*-l - Cz)” 
(0 < 2 s 28 = (1 - A*-‘) C-l < “2 < 21) (4.9) 

Inequalities (4.6) and (4.9) hold on [O, zs] simultaneously. By (4.5) and the condip 
tion h < As we have, on this interval, 
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R (2) > (1 - A,-l - CZ)~ + 8n-%,-l(~, - z)” z ZIG R, (z) sis 
= (B - 13)~ + Dz (4.10) 

Let US denote by R,,% the minimum of RI (z) for z > 0. We can easily verify that 

R,,“=B” &=+<lj, 
i 

Ro2=$& -& (Ds> I), 

hence 
R (2) > + > Ro2 (zs < z < Zl! 

R (z) > Ro2 (z E [O, ql) 

(4.11) 

(4.12) 
tit us now find the estimate for A (2). From (4.12), (3.17). (3.18) and the inequalities 

follows 
k* > 6-2, k < A, < A1 

A > R,-’ (6” + z)-‘A (0 4 z < zl), A > (6” + z)-‘.; ((1 + k*z)‘l* >-: 

x (htW)--1 - I)_‘> (62 + z)-1 (6% + zp ((1 + k*zl)“~(h,W)-‘-l)-’ 

(z1 = w12 < z = 6Ja < CQ) (4.13) 

Replacing the integrand expression in (4.3) by irs modulus and using (4.13) we obtain 

the upper limit for 1 g (t) ( , which on insertion into (4.1) yields the estimates (1.21) 

and (1.22) for &max (t) and EM. 
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